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Introduction: This study evaluated 6-month effectiveness and safety of

automated insulin delivery (AID) in comparison with multiple daily injections

(MDI) in pediatric and adult type 1 diabetes (T1D).

Materials and methods: Individuals with T1D, aged 2–80 years, were enrolled

across 32 international centers (in the United States, Europe, Canada, and New

Zealand) and randomized 1:1 to AID intervention (MiniMed™ 670G or 770G system)

or MDI with or without continuous glucose monitoring. Primary endpoints were

change in mean HbA1c for participants with a baseline HbA1c >8.0% (Group 1) and

percentage of time spent below 70 mg/dL (%TBR <70 mg/dL [<3.9 mmol/L]) for
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participants with baseline HbA1c ≤8.0% (Group 2), to show superiority of AID

intervention versus MDI. Safety endpoints including rates of severe hypoglycemia

and diabetic ketoacidosis (DKA), and difference in diabetes treatment satisfaction

score were assessed.

Results: For Group 1, N = 56 participants (aged 29.4 ± 17.0 years) were

randomized to AID intervention and N = 54 participants (aged 36.8 ± 19.6

years) were randomized to MDI. For Group 2, N = 73 (aged 37.4 ± 21.0 years)

and N = 69 (aged 39.2 ± 19.3 years), respectively, were randomized to AID and

MDI. Change in HbA1c (mean [95% CI] difference of −0.7% [−1.1, −0.3], P =

0.0002) and difference in %TBR <70 mg/dL (4.8% [−6.4, −3.1], P<0.001) favored

AID intervention versus MDI. Rates of severe hypoglycemia (AID: 1.82/100

patient-years) and DKA (MDI: 3.52/100 patient-years) were low and met

preestablished success criteria for safety.

Discussion: This large, international, multicenter randomized controlled trial

demonstrates safety of the MiniMed™ 670G/770G systems. AID significantly

improved HbA1c and time spent in hypoglycemia when compared with MDI, in

both youth and adults living with T1D.

Clinical trial registration: https://clinicaltrials.gov/, identifier NCT02748018.
KEYWORDS

type 1 diabetes, automated insulin delivery, HbA1c, time below range, time in range,
diabetes treatment satisfaction, adult, pediatric
Introduction

The majority of international guidelines recommend automated

insulin delivery (AID) systems as the standard of care for people

living with type 1 diabetes (T1D), both for adult and pediatric

populations (1, 2). Systematic reviews and meta-analyses have

demonstrated the superiority of AID versus multiple daily

injections (MDI) or continuous subcutaneous insulin infusion

(CSII) with or without continuous glucose monitoring (CGM)

(3–5), through an improved glycated hemoglobin (HbA1c) and

percentage of time in range (%TIR), and a concomitant reduction in

or unchanged time below range (%TBR <70 mg/dL [<3.9 mmol/L]).

The Medtronic MiniMed™ 670G (MM670G) system was the

first AID system approved for diabetes care (September 28, 2016). It

used a proportional integrated derivative-insulin feedback module

algorithm that provides adaptive basal AID every 5 min based on

current and predicted sensor glucose (SG) readings and a preset

glucose target (e.g., 120 mg/dL [6.7 mmol/L], or 150 mg/dL [8.3

mmol/L], if using the temporary target). As part of the new

Medtronic AID device family equipped with telemetry, the

MiniMed™ 770G (MM770G) system, which has the same

algorithm as the MM670G system, was approved August 31,

2020, and designed to automatically upload and display real-time

insulin delivery metrics and CGM data directly through the

MiniMed™ mobile app by Bluetooth™ technology.
02
In 2023, Garg and colleagues published results from the

multicenter, adaptive, randomized controlled trial (RCT)

evaluating MM670G AID versus continuous subcutaneous insulin

infusion (CSII) control and demonstrated safety with significantly

improved HbA1c in favor of AID intervention, irrespective of

baseline HbA1c glycemic control, in pediatric and adult T1D (6).

The present study reports findings from a parallel RCT evaluating

MM670G/770G AID versus MDI with and without CGM, in

pediatric and adult T1D.
Materials and methods

Study design

The Multicenter Trial in Adult and Pediatric Patients with T1D

Using a Hybrid Closed-Loop (HCL) System and Control at Home Trial

(ClinicalTrials.gov NCT02748018) comprised three separate

randomized, parallel, adaptive study evaluations, to assess the safety

and effectiveness of the MM670G/770G AID systems in participants

with T1D aged 2–80 years. Each RCT evaluation included a 6-month

comparator of multiple daily injections (MDI) with or without

continuous glucose monitoring (CGM) and continuous

subcutaneous insulin infusion (CSII) without CGM or sensor-

augmented pump (SAP) control. Study enrollment for the CSII
frontiersin.org
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evaluation (for which results have been published) (6) occurred at 23

sites across the United States (N = 22) and Canada (N = 1).

Enrollment for the present study (AID versus MDI evaluation) was

conducted at 32 sites across the United States (N = 22), Canada (N

= 2), New Zealand (N = 2), and Europe (N = 6) and participants

randomized to the AID intervention arm used either a MiniMed™

670G (MM670G) system or MiniMed™ 770G (MM770G) system.

The trial complied with the Declaration of Helsinki and, where

applicable, the United States Food and Drug Administration Code

of Federal Regulations Title 21, Health Canada Regulations (SOR/

98-282), the International Organization for Standardization (ISO

14155:2011), and applicable laws and requirements (national and

local). The protocol was approved by the central Internal Review

Board (IRB) Advarra (formerly Quorum IRB) and local

investigational site IRBs. Informed consent and assent, when

applicable, were obtained before study start.
Participants

Individuals (2–80 years of age) with a clinical diagnosis of T1D

and who used MDI with or without CGM for ≥3 months before

screening were included. To participate successfully, the following

were required: a total daily insulin dose of ≥8 units/day and the

ability to perform or reliably undergo ≥4 blood glucose

measurements (BGMs) per day. Individuals aged 2–21 years were

required to have requisite support. Exclusion criteria included

participation in a previous closed-loop device study; inability to

tolerate tape adhesive around the glucose sensor; and any

unresolved adverse skin condition around the glucose sensor or

transcutaneous infusion set. The full list of eligibility criteria is in

Supplementary Material S1. All participants provided written

informed consent or assent (when applicable) before starting

the study.
Study schedule and randomization

The study visit schedule is listed in Supplementary Material S2,

and visit 1 included bloodwork for a central laboratory HbA1c test,

in addition to completion of the Diabetes Treatment Satisfaction

Questionnaire status (DTSQs) form. All participants underwent

masked CGM (Guardian™ Sensor 3 glucose sensor connected to

the Guardian™ Link transmitter [Medtronic]) during a run-in

period of 2 weeks (visits 1-3) and were expected to demonstrate

appropriate glucose sensor wear and perform requested daily BGMs

with a CONTOUR®NEXT LINK 2.4 blood glucose meter (Ascensia

Diabetes Care, Parsippany, NJ) or Accu-Chek® Guide Link blood

glucose meter (Roche Diabetes Care, Inc., Indianapolis, IN), which

were used for sensor calibration. The CGM data captured during

run-in provided baseline metrics for both the AID intervention and

control arm.

At the end of the run-in period, participants underwent

computer-generated 1:1 randomization into AID intervention or
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control and were stratified based on their baseline HbA1c such that

Group 1 comprised participants with baseline HbA1c >8.0% and

Group 2 included only those with baseline HbA1c ≤8.0%.

Participants 2–6 years of age were automatically entered into the

AID intervention arm. At the beginning of the study period (visit 4),

the AID intervention arm started CGM and enabled Auto Mode for

6 months. For the control arm, preexisting diabetes management

therapy was continued for 6 months. Follow-up office and

telephone visits occurred until the end of the study period (visit

9), when bloodwork for a central laboratory HbA1c test was

collected, and the DTSQs and Diabetes Treatment Satisfaction

Questionnaire change (DTSQc) were completed.
System settings

For the AID intervention arm, the study pump was set with the

automated basal glucose target (GT) of 120 mg/dL (6.7 mmol/L)

and allowed a temporary target of 150 mg/dL (8.3 mmol/L). It was

recommended to set the high SG limit alert at 300 mg/dL and the

low SG limit alert at 70 mg/dL (3.9 mmol/L). For participants 2–6

years of age, the low SG alert was advised to be no lower than 70

mg/dL. The insulin-to-carbohydrate ratios and active insulin time

were adjusted as needed and based on the investigator’s discretion.

For the MDI control arm, insulin therapy and adjustments were as

needed and based on the investigator’s discretion.
Primary and secondary endpoints

For Group 1 (baseline HbA1c >8%), the primary endpoint was

the difference in HbA1c change from baseline to the end of the 6-

month study period. The goal was to show superiority of the AID

intervention arm compared with the control arm in HbA1c

reduction. For Group 2 (baseline HbA1c ≤8%), the primary

endpoint was the difference in the percentage of time spent below

70 mg/dL (%TBR <70 mg/dL). The goal was to show superiority of

the AID intervention arm compared with the control arm in

reducing time in hypoglycemia. The secondary endpoint for

Group 1 was the difference in %TBR <70 mg/dL to show non-

inferiority of the AID intervention arm compared with the control

arm in reducing time in the hypoglycemic range. For Group 2, the

secondary endpoint was the difference in HbA1c change from

baseline to the end of the 6-month study period to show

noninferiority of the AID intervention arm compared with the

control arm in reducing HbA1c.

For the primary effectiveness endpoints, the sample size

estimates for change in HbA1c were based on a two-sample t test

with a one-sided type I error rate of 2.5%. For Group 1, assuming a

mean change in HbA1c of −0.45% in the AID arm and of −0.1% in

the MDI control arm (with a standard deviation of 0.5% for both

arms), a power and sample size calculator showed that a total of 140

participants (N = 70 in AID and N = 70 in MDI control) would

provide over 95% power to detect the superiority of the AID arm.
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The sample size estimates for %TBR <70 mg/dL were, also, based on

a two-sample t test with a one-sided type I error rate of 2.5%. For

Group 2 and assuming an AID arm mean %TBR <70 mg/dL of 5%

with a standard deviation of 4% and an MDI control arm mean %

TBR <70 mg/dL of 9% with a standard deviation of 6%, a total of

140 participants (N = 70 in AID and N = 70 in MDI control) would

provide over 90% power to detect the superiority of the AID arm.

The same t test and type I error rate estimated similar sample sizes

(N = 70 in AID and N = 70 in MDI control) to provide over 90%

power to detect non-inferiority of the AID arm compared with the

MDI control arm, for the secondary effectiveness endpoints. For

Group 1, a mean %TBR <70 mg/dL of 4% with a standard deviation

of 3% was assumed for the AID arm and a mean %TBR <70 mg/dL

of 6% with a standard deviation of 4% was assumed for the MDI

control arm (non-inferiority margin of 2%). For Group 2, a mean

change in HbA1c of −0.1% was assumed for the AID arm and of

0.0% in the MDI control arm, and a standard deviation of 0.7% for

both arms (non-inferiority margin of 0.4%).
Additional endpoints

Additional key CGM-derived glycemic endpoints for Group 1 and

Group 2 of the AID intervention arm and control arm were compared

and included mean SG, SD of SG, coefficient of variation (CV) of SG,

and percentage of time spent at additional SG ranges (i.e., <54 mg/dL

[<3.0 mmol/L], <70 mg/dL, 70–180 mg/dL [3.9-10.0 mmol/L], >180

mg/dL, and >250 mg/dL [>13.9 mmol/L]). For the control arm, 2-

week masked CGM at specific timepoints post-randomization was

conducted in parallel with the intervention arm using the AID device.

The same endpoints were also assessed in an exploratory glycemic

metrics analysis of participants aged 2–17 and 18–80 years.
Participant-reported outcomes

Self-reported responses to the DTSQs were collected during

baseline and at the end of the study and asked participants to rank

treatment satisfaction on a 7-point scale from “very dissatisfied” to

“very satisfied”. Queries were based on the sum of six items (current

treatment satisfaction, convenience, flexibility, understanding of

diabetes, treatment recommendation to others, and willingness to

continue treatment), whereas two additional items related to the

perception of high and low blood glucose control. Responses to the

DTSQc were captured at the end of the study only. The scores for

total diabetes treatment satisfaction (ranging from −36 to +36 for

the DTSQs and from −18 to +18 for the DTSQc) were based on the

sum of six items (current treatment satisfaction, convenience,

flexibility, understanding of diabetes, treatment recommendation

to others, and willingness to continue treatment) ranked on a 7-

point scale from “much less [… ] now” to “much more [… ] now”.

In addition to the perceived hypoglycemia and hyperglycemia items

(scores ranging from −3 to +3), the DTSQc asked participants to

compare their current diabetes treatment with their diabetes

treatment before the study started.
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Safety endpoints

The primary safety endpoints were reported for each

randomized cohort and were based on event rate (100 patient-

years) including severe hypoglycemia (defined as an event requiring

the active assistance of another individual to administer

carbohydrate, glucagon, or other resuscitative actions due to

altered participant consciousness) and DKA (defined as blood

glucose >250 mg/dL, arterial pH <7.3, bicarbonate <15 mEq/L,

and moderate ketonuria or ketonemia, requiring treatment within a

health care facility). In addition, serious adverse events (SAEs),

serious adverse device effects (SADEs), unanticipated adverse device

effects (UADEs), and deaths were reported.
Statistical and descriptive analyses

The primary effectiveness endpoint for Group 1 (baseline

HbA1c >8.0%) underwent hierarchical analyses to determine the

superiority of the AID intervention compared with control in

HbA1c reduction and, for Group 2 (baseline HbA1c ≤8%), the

superiority of the AID intervention compared with control in %

TBR <70 mg/dL reduction. The secondary effectiveness endpoint

for Group 1 included determining noninferiority of the AID

intervention compared with control in %TBR <70 mg/dL

reduction and, for Group 2, HbA1c reduction.

For primary and secondary endpoints involving HbA1c, a multiple

imputation (MI) was applied for missing HbA1c data using an

imputation regression method (yˆ + z^r), where yˆ is the predicted

value, z is a standard normal random variable, and ^r is the estimated

standard deviation (SD) from the regression model. Age, sex, baseline

HbA1c, diabetes duration, and BMI were independent variables in the

model. Imputations were conducted five times using theMI procedure,

and results were combined to form one inference using the

MIANALYZE procedure in SAS™ 9.4 (SAS Institute, Cary, NC).

Comparisons of mean [95% confidence interval] difference in

HbA1c change and difference in %TBR<70 mg/dL between AID

intervention and control were conducted with one-way analysis of

variance (ANOVA), and P < 0.05 was considered statistically

significant. For additional key glycemic endpoints, the mean [95%

CI] difference between AID intervention and control was

determined. These glycemic endpoints underwent descriptive

analysis by age group (2–17 years and 18–80 years). The mean

[95% CI] of DTSQs and DTSQc scores were assessed to determine

difference between AID intervention and control. Comparisons and

analyses were conducted for both Group 1 and Group 2.
Results

Study participant disposition and baseline
characteristics

A total of 276 individuals were enrolled in the study (Figure 1).

There were 10 screen failures, 3 early withdrawals due to burden, time
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commitment, and personal reasons, and 12 withdrawals during the

run period that were due to burden (N = 5), time commitment (N = 3),

non-compliance (N = 1), personal reasons (N = 1), and an adverse

event (N = 2). A total of 252 participants were randomized to either the

AID intervention arm (N = 129; N = 56 in Group 1 and N = 73 in

Group 2) or the MDI control arm (N = 123; N = 54 in Group 1 and

N = 69 in Group 2). In the intervention arm, withdrawals (N = 12)

were due to burden (N = 6), non-compliance (N = 1), investigator

decision (N = 1), and an adverse event (N = 4), whereas withdrawals

from the control arm (N = 14) were due to burden (N = 3), time

commitment (N = 2), personal reasons (N = 4), loss to follow up (N =

3), and relocation (N = 2). The baseline demographics and

characteristics of Group 1 (baseline HbA1c >8.0%) and Group 2

(baseline HbA1c ≤8.0%) randomized participants are shown in

Tables 1, 2, respectively. They are also listed by the overall group in

Supplementary Material S3.
Primary and secondary endpoints

By the end of the 6-month study period, the percentage of time

spent in closed loop was 77.6% ± 20.6% and 85.3% ± 13.6% for the

Group 1 and Group 2 AID intervention arms, respectively. In

Group 1, mean HbA1c decreased significantly from 9.1% ± 0.9%

at baseline to 7.7% ± 1.0% in the AID arm (D of −1.4 ± 1.1%) and

from 8.9% ± 1.1% at baseline to 8.2% ± 0.9% in the MDI arm (D of

−0.6 ± 0.9%) the mean difference of −0.7% (−1.1% to −0.3%] (P =

0.0002) favored the AID intervention (Table 3). For the co-primary
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endpoint, there was a significant mean difference in %TBR <70 mg/

dL in favor of the AID intervention for Group 2 (−4.8% [−6.4% to

−3.1%], P < 0.0001) (Table 3). Given the rejection of the null

hypotheses for the primary endpoints, secondary endpoint testing

determined a significant mean difference in %TBR <70 mg/dL for

Group 1 (−3.6% [−5.4% to −1.9%], P < 0.0001) that, also, favored

AID intervention. The reduction in time spent below range for each

group was 1.2 and 0.9 h/day, respectively, compared with the MDI

control arm. For Group 2, mean HbA1c (7.1% ± 0.6%) remained

stable in the AID arm and decreased by 0.1% in the MDI arm.
24-hour sensor glucose profiles

The 24-h SG profiles are shown in Figures 2 and 3. The Group 1

median of SG for the AID intervention arm remained well below

the median of SG for the MDI arm that had an upper interquartile

range (IQR) spanning 180 to 230 mg/dL (10.0 to 12.8 mmol/L)

across the 24-h day (Figure 2). In contrast, the AID intervention

upper IQR spanned 150 to 190 mg/dL (8.3 to 10.6 mmol/L). For

Group 2, the median of SG for the AID intervention arm closely

matched that for the MDI arm during the late evening to early

morning, and its IQR was nested within the MDI IQR (Figure 3). To

add, the Group 2 AID IQR also appeared tighter than that observed

for the Group 1 AID arm, especially during the early morning (2:00

AM–8:00 AM). Overall, the AID intervention appeared to provide

an incrementally greater reduction in hyperglycemia for

both groups.
FIGURE 1

Study participant disposition from enrollment to completion.
frontiersin.org
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CGM-derived endpoints

The differences in key CGM-derived metrics (including mean

SG, SD of SG, CV of SG, and %TAR >180 mg/dL) between AID

intervention and control are illustrated in Figure 3 and shown by

group. The Forest plot demonstrates that all parameters were

significantly improved with AID intervention except for change

in HbA1c and mean SG in Group 2. The CGM-derived glycemic

metrics for Group 1 and 2 AID interventions versus MDI control
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are described for participants aged 2–17 years (Supplementary

Materials S5) and participants aged 18–80 years (Supplementary

Materials S6).
Participant-reported outcomes

Table 4 shows that Group 1 of the AID intervention arm had a

significantly higher end-of-study DTSQs and DTSQc total scores,
TABLE 1 Group 1 (baseline HbA1c >8.0%) demographics and baseline
characteristics.

AID
(N=56)

MDI control
(N=54)

Age, years

Mean 29.4 (17.0) 36.8 (19.6)

Range (min, max) 4.0, 70.0 4.0, 72.0

Sex, N (%)

Male 19 (33.9%) 20 (37.0%)

Female 37 (66.1%) 34 (63.0%)

Baseline HbA1c, %

Mean 9.1 (0.9) 8.9 (1.1)

Range (min, max) 8.1, 11.6 8.1, 13.1

Diabetes history, years

Mean 14.3 (11.6) 15.5 (12.7)

Range (min, max) 0.0, 48.0 0.0, 51.0

Weight (kg) 72.1 (26.9) 74.6 (24.4)

BMI (kg/m2) 25.3 (5.9) 26.3 (6.2)

Racial ancestry

White 47 (83.9%) 44 (81.5%)

Asian 0 (0.0%) 1 (1.9%)

Indigenous/First Nations 0 (0.0%) 0 (0.0%)

Asian; White 0 (0.0%) 1 (1.9%)

Black African 2 (3.6%) 2 (3.7%)

Black African; White 0 (0.0%) 1 (1.9%)

Not reportable per local laws 5 (8.9%) 4 (7.4%)

Other 1 (1.8%) 1 (1.9%)

White; Other 1 (1.8%) 0 (0.0%)

Ethnicity

Non-Hispanic/Latino 47 (83.9%) 42 (77.8%)

Hispanic/Latino 4 (7.1%) 8 (14.8%)

Not reportable per local law/regulation 5 (8.9%) 4 (7.4%)

Not reported 0 (0.0%) 0 (0.0%)
Data are presented as mean (SD) or N (%).
HbA1c, glycated hemoglobin; AID, automated insulin delivery; BMI, body mass index; SD,
standard deviation.
TABLE 2 Group 2 (baseline HbA1c ≤8%) demographics and baseline
characteristics.

AID
(N=73)

MDI control
(N=69)

Age, years

Mean 37.4 (21.0) 39.2 (19.3)

Range (min, max) 6.0, 75.0 8.0, 76.0

Sex, N (%)

Male 20 (27.4%) 22 (31.9%)

Female 53 (72.6%) 47 (68.1%)

Baseline HbA1c, %

Mean 7.1 (0.6) 7.1 (0.6)

Range (min, max) 5.5, 8.0 5.8, 8.0

Diabetes history, years

Mean 18.3 (15.9) 19.4 (14.8)

Range (min, max) 0.0, 61.0 0.0, 60.0

Weight (kg) 72.3 (23.2) 77.4 (20.2)

BMI (kg/m2) 24.6 (5.8) 26.0 (6.2)

Racial ancestry

White 60 (82.2%) 61 (88.4%)

Asian 0 (0.0%) 1 (1.4%)

Indigenous/First Nations 1 (1.4%) 0 (0.0%)

Asian; White 0 (0.0%) 0 (0.0%)

Black African 3 (4.1%) 0 (0.0%)

Black African; White 0 (0.0%) 0 (0.0%)

Not reportable per local laws 6 (8.2%) 7 (10.1%)

Other 3 (4.1%) 0 (0.0%)

White; Other 0 (0.0%) 0 (0.0%)

Ethnicity

Non-Hispanic/Latino 65 (89.0%) 54 (78.3%)

Hispanic/Latino 2 (2.7%) 8 (11.6%)

Not reportable per local law/regulation 6 (8.2%) 6 (8.7%)

Not reported 0 (0.0%) 1 (1.4%)
Data are presented as mean (SD) or N (%).
HbA1c, glycated hemoglobin; AID, automated insulin delivery; BMI, body mass index; SD,
standard deviation.
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when compared with those of the control arm (29.2 ± 6.4 versus

23.9 ± 6.4 [P = 0.0152] and 12.8 ± 6.3 versus 6.5 ± 7.1 [P = 0.0002],

respectively). The same was observed regarding significantly

reduced perceived frequency of hyperglycemia and hypoglycemia

scores, in favor of AID intervention (Table 4). In contrast, the total

DTSQs and DTSQc scores for the Group 2 AID intervention arm

(26.4 ± 7.1 and 8.5 ± 8.4, respectively) were much lower and did not

differ from those observed in the Group 2 control arm (25.8 ± 6.6

and 5.7 ± 7.0, respectively). Only the change in perceived frequency

of hypoglycemia was significantly reduced for the Group 2 AID

intervention arm, compared with control (P = 0.0055).
Safety endpoints

Preestablished safety success criteria were met for both severe

hypoglycemia and DKA. There was one DKA event (Group 1/adult

participant) that occurred in the AID intervention arm (1.82 per

100 patient-years), and there were two severe hypoglycemic events

(Group 2/adult participants) that occurred in the MDI control arm

(3.52 per 100 patient-years). There were no SADEs, UADEs, or

deaths in the trial.
Discussion

This international, multicenter, randomized study of 6-month

MM670G/770G system AID versus MDI (with or without CGM)

evaluated a large population of adults and youth living with T1D

and demonstrated the superiority of AID, in terms of clinically

significant difference in change in HbA1c (−0.7%) for Group 1

(baseline HbA1c >8.0%) and difference in %TBR <70 mg/dL

(−4.8%) for Group 2 (baseline HbA1c ≤8%), when compared

with control. The study also demonstrated system safety across all

participants, as event rates for DKA (N = 1, 1.82 per 100 patient-

years) and severe hypoglycemia (N = 0) met preestablished success
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criteria for AID intervention and aligned closely with those

observed during the MM670G AID versus CSII control RCT (6).

The present study also demonstrated improved treatment

satisfaction with AID compared with MDI control. The

differences between the AID intervention and control DTSQs and

DTSQc scores were 4.8 (95%CI 1.0, 8.6) and 6.3 (95%CI 3.1, 9.5)

respectively for Group 1, although only 0.2 (95%CI −2.9, 3.4) and

2.7 (95%CI −0.3, 5.8), respectively, for Group 2. The lower

differences for Group 2 may have been due to some with a lower

baseline HbA1c (and greater baseline glycemic control) having a

higher satisfaction expectation that was unmet, which has been

reported for a previous MiniMed™ 670G AID study (7). There may

also have been an element of burden associated with trial protocol

requirements for this group (8). Although a study effect could have

positively impacted diabetes treatment satisfaction for the Group 1

control arm, given the clinically significant reduction in their

HbA1c (−0.6%), their total DTSQs and perceived frequency of

hyperglycemia and hypoglycemia scores were fairly similar from

baseline to study end, suggesting benefits with AID in addition to

improved glycemic control. Improved glycemic and psychosocial

outcomes observed with AID intervention, in the present study,

have substantial relevancy as they strengthen and support the well-

being and quality of life of people living with T1D, factors that are

often associated with AID therapies (9).

Similar benefits of lowered HbA1c and reduced time spent in

hypoglycemia have been observed in pediatric and adult T1D, with

another basal AID therapy. A single-arm, non-randomized follow-

up extension trial of the Omnipod™ 5 system (Insulet Corporation,

Acton, MA, USA) reported clinically significant reductions of

−0.8% in the HbA1c of children (N = 108, aged 10.4 ± 2.1 years,

baseline HbA1c of 7.7 ± 0.9 [5.8, 10.3]) and of −0.5% in the HbA1c

of adolescents and adults (N = 114, aged 36.8 ± 14.0 years, baseline

HbA1c of 7.2 ± 0.9% [5.2, 9.8]) at 6 months, compared with

standard therapy (10). A clinically significant reduction in %TBR

<70 mg/dL was also observed for the older participants, at 6

months. Although only 11.8% of youth and 16.7% of adults used
TABLE 3 Differences in primary and secondary endpoints between the AID intervention and control arm, stratified by baseline HbA1c.

AID MDI control Difference
(AID − MDI)

P
N Baseline Study end D N Baseline Study end D

Primary endpoints

Group 1: HbA1c, % 56 9.1 ± 0.9 7.7 ± 1.0 −1.4 ± 1.1 54 8.9 ± 1.1 8.2 ± 0.9 −0.6 ± 0.9 −0.7 [−1.1, −0.3] 0.0002a

Group 2: TBR<70 mg/dL, % 73 8.0 ± 6.8 2.8 ± 2.7 NA 69 8.6 ± 5.7 7.5 ± 6.1 NA −4.8 [−6.4, −3.1] <.0001b

Secondary endpoints

Group 1: TBR<70 mg/dL, % 56 4.8 ± 4.4 1.9 ± 1.6 NA 54 4.4 ± 4.2 5.5 ± 5.9 NA −3.6 [−5.4, −1.9] <.0001a

Group 2: HbA1c, % 73 7.1 ± 0.6 7.1 ± 0.6 0.0 ± 0.6 69 7.1 ± 0.6 7.0 ± 0.7 −0.1 ± 0.5 0.1 [−0.1, 0.3] 0.0014b
fronti
Primary glycemic endpoints (superiority test) based on a baseline HbA1c of >8.0% [Group 1] or a baseline HbA1c of ≤8.0% [Group 2]. Comparative analyses (one-way ANOVA) are shown
between the AID arm and control arm for either HbA1c or %TBR <70 mg/dL (<3.9 mmol/L) difference (baseline versus 6 months).
Data are presented as mean ± SD or mean [95% CI].
Time in AID was 79.6 ± 19.7% and 86.2 ± 13.4% for the Group 1 AID arm and Group 2 AID arm, respectively.
aComparison of change in HbA1c between AID intervention and MDI control.
bComparison of end-of-study %TBR <70 mg/dL (<3.9 mmol/L) between AID intervention and MDI control.
ersin.org

https://doi.org/10.3389/fendo.2025.1716587
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jendle et al. 10.3389/fendo.2025.1716587
MDI for standard therapy, glycemic improvements were reported

for both age groups, regardless of baseline HbA1c.

The initialization of diabetes technology use after MDI therapy

(11) or the addition of CGM to CSII therapy (12, 13) can

significantly influence diabetes management behavior and

markedly improve glycemic outcomes that are dependent on the

extent of that technology use (14). The AID glycemic improvement

in the present study, when compared with MDI outcomes, or with

CSII for the other parallel RCT (6), strongly supports this. While

MDI, with or without CGM, may serve as standard of care in
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developing regions due to lack of access or funding, optimized T1D

glycemic control can be especially challenging or unattainable for

youth or others living with significant dysglycemia or fear of

hypoglycemia (15). In the present study, the overall group of

participants (youth and adults) spent 77.6 ± 20.6% of time in

closed loop, which appeared to differ for the younger participants

(72.1 ± 22.7% [N = 16]) relative to the adults (79.6 ± 19.7% [N =

40]). Nevertheless, our exploratory subgroup analysis showed that

AID intervention versus MDI control demonstrated a clinically

significant increase in %TIR and a profound reduction in mean SG
FIGURE 2

24-hour sensor glucose profiles of the AID intervention versus control, by baseline HbA1c group. The medians and interquartile ranges of the 24-h
sensor glucose profiles after randomization to the AID intervention arm (pink band with solid lines) or MDI control arm (gray band with dashed lines)
are shown by group. For both groups, sensor glucose data are based on the 2 weeks before the 6-month follow-up visit. The Group 1 AID
intervention arm had N = 14 participants aged 2–17 years and N = 36 participants aged 18–80 years, and the MDI control arm had N = 8 aged 2–17
years and N = 30 aged 18–80 years. The Group 2 AID intervention arm had N = 19 participants aged 2–17 years and N = 46 participants aged 18–80
years, and the MDI control arm had N = 7 aged 2–17 years and N = 48 aged 18–80 years.
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and %TAR for those in Group 1 and an appreciable reduction in %

TBR <70 mg/dL for those in Group 2, for youth and adults.

Iterative advancements in diabetes technology including lower

basal glucose targets and several active insulin time settings that

personalize AID (4, 16–19) have been integral to improved HbA1c

and CGM-derived glucose metrics (20–22), physiological

normalization (23, 24), and better psychosocial outcomes (16, 18,

25). The advancement of AID technology from the first-in-class

MiniMed™ 670G system with automated basal insulin to the

MiniMed™ 780G system with automated correction insulin

(available as often as every 5 min, as needed), in addition to

automated basal insulin and lower glucose targets of 100 mg/dL

(5.5 mmol/L) and 110 mg/dL (6.1 mmol/L) support this (26).

Strengths of the present study include the 6-month duration, the

1:1 randomized and parallel study design, and the evaluation of AID

glycemic effectiveness with a standard therapy comparator

(depending on national health care system, regulations, and

reimbursement), in a large number of participants with T1D who
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represented different baseline glycemia (HbA1c ≤8.0% and HbA1c

>8.0%). Study endpoints were supplemented with adult psychosocial

outcomes and exploratory assessment of CGM-derived outcomes for

the overall group and by age group.

A limitation of the study was the low percentage of individuals

from underrepresented or minority groups. For example, compared

with United States 2019–2021 estimates for adults with diabetes

(27), Native American (0.6% versus 13.6%), Asian (0.8% versus

9.1%), non-Hispanic Black (2.8% versus 12.1%), and Hispanic

(5.5% versus 11.7%) groups were underrepresented in the overall

cohort. This introduces some bias in the observed study outcomes,

as the enrolled participants most likely experience substantial

differences in healthcare and social determinants of health. This

disproportionate inclusion of diverse groups may limit the

generalizability of study findings to a larger and diverse type 1

diabetes population. A second limitation is that not all participants

in the MDI control group used CGM, and the study did not include

a separate comparison between MDI primary and secondary
TABLE 4 Adult diabetes treatment satisfaction with the AID intervention and control arm, by baseline HbA1c group.

AID MDI control Difference
(AID − MDI)

P
Baseline Study end D Baseline Study end D

Baseline HbA1c of >8.0% [Group 1]

DTSQ(s), N 41 37 36 42 34 34 – –

Total scorea 23.6 ± 6.0 29.2 ± 6.4 5.1 ± 9.1 23.6 ± 5.3 23.9 ± 6.4 0.3 ± 6.7 4.8 (1.0, 8.6) 0.0152

Perceived frequency of
hyperglycemia

3.7 ± 1.4 2.4 ± 1.4 −1.3 ± 1.8 3.6 ± 1.3 3.5 ± 1.4 −0.0 ± 1.8 −1.2 (−2.1, −0.4) 0.0052

Perceived frequency of
hypoglycemia

2.3 ± 1.6 1.7 ± 1.1 −0.4 ± 1.7 1.7 ± 1.2 2.1 ± 1.3 0.6 ± 1.5 −1.0 (−1.8, −0.3) 0.0082

DTSQ(c), N - - 36 - - 34 – –

Total scorea NA NA 12.8 ± 6.3 NA NA 6.5 ± 7.1 6.3 (3.1, 9.5) 0.0002

Perceived frequency of
hyperglycemia

NA NA −0.8 ± 1.8b NA NA 0.6 ± 1.4 −1.4 (−2.2, −0.6) 0.0005

Perceived frequency of
hypoglycemia

NA NA −0.7 ± 1.6b NA NA −0.0 ± 1.1 −0.7 (−1.3, −0.0) 0.0360

Baseline HbA1c of ≤8.0% [Group 2]

DTSQ(s), N 53 45 45 61 57 56 – –

Total scorea 25.5 ± 6.8 26.4 ± 7.1 0.7 ± 10.2 25.8 ± 6.0 25.8 ± 6.6 0.5 ± 5.2 0.2 (−2.9, 3.4) 0.8828

Perceived frequency of
hyperglycemia

3.0 ± 1.4 2.7 ± 1.6 −0.3 ± 1.9 3.1 ± 1.4 3.0 ± 1.5 −0.2 ± 1.8 −0.1 (−0.8, 0.7) 0.8493

Perceived frequency of
hypoglycemia

2.5 ± 1.5 1.8 ± 1.3 −0.7 ± 1.7 2.3 ± 1.3 2.3 ± 1.2 0.0 ± 1.3 −0.7 (−1.3, −0.1) 0.0262

DTSQ(c), N - - 45 – – 58 – –

Total scorea NA NA 8.5 ± 8.4 NA NA 5.7 ± 7.0 2.7 (−0.3, 5.8) 0.0744

Perceived frequency of
hyperglycemia

NA NA 0.2 ± 1.9c NA NA 0.4 ± 1.4 −0.2 (−0.8, 0.5) 0.6253

Perceived frequency of
hypoglycemia

NA NA −0.7 ± 1.6c NA NA 0.1 ± 1.3 −0.8 (−1.3, −0.2) 0.0055
frontie
aTotal score includes items 1, 4–8 for adult version.
Data are presented as mean ± SD or mean (95% CI).
bN=37, cN=46.
rsin.org

https://doi.org/10.3389/fendo.2025.1716587
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jendle et al. 10.3389/fendo.2025.1716587
endpoints with and without CGM use relative to AID intervention.

Significantly improved outcomes with AID may, in part, have been

due to BGM use with MDI, especially if inconsistent, as the T1D

Exchange has demonstrated that BGM frequency is inversely

proportional to suboptimal HbA1c (28) and CGM use is

associated with better glycemic control achievement (29). In

addition, only the participant-reported psychosocial outcomes of

adults were analyzed.

In conclusion, this large, international, multicenter RCT study

further demonstrates safe and significant HbA1c and %TBR <70

mg/dL reduction in T1D that favors MiniMed™ 670G/770G AID

versus MDI with or without CGM, in addition to AID-improved

treatment satisfaction.
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